
JAVA/CORBA Implementation of Petri Nets for Control of Manufacturing Systems
Choy Min Chee

Department of Electrical Engineering
National University of Singapore

10 Kent Ridge Crescent, Singapore 119260
Tel: (65) 874 4857

E-mail: eng70390@ nus.edu.sg

ABSTRACT

The intense competition present in the manufacturing
industry has renewed interest in the issues of increasing
productivity through state-of-art manufacturing technology.
Gaining technological edge requires the harnessing of
innovative concepts and original ideas in solving complex
manufacturing planning and control problems. Flexible
manufacturing system (FMS) is a concept that has evolved
since the 1970s that attempts to achieve the efficiency of
automated, high-volume mass production while retaining
the flexibility of low-volume job-shop production. Petri Net
is a mathematical modeling concept that is suitable for
portrayal of discrete event dynamic systems. As such, the
Petri Nets concept has been adopted in this project to
model, monitor and control the different modules of a FMS
in a real time manner. Each module of the FMS is designed
according to the Petri Nets model and run in an
independent, generic application written entirely in Java.
The synchronization and communication between these
modules are achieved using the Common Object Request
Broker architecture (CORBA). Jobs created based on the
master production schedule (MPS) generated by the
existing Material Resource Planning (MRP) module are
dispatched into the factory network where they are
processed and routed until completion. Real-time
scheduling using CEXSPT is performed on the jobs as they
are routed through the factory network. In addition, the
MPS is dynamically modified according to the finished
jobs’ status.

1 INTRODUCTION

In recent years, fluctuating market demand for
manufacturing products, shorter lead-time, smaller but more
frequent order quantities are some factors which makes
forecasting of demand for a manufacturing product
extremely challenging. The concept of Material
Requirement Planning (MRP) in an assemble-to-order
environment aims to alleviate the problem. In the assemble-
to-order environment, the manufacturing system is required
to possess a high degree of flexibility and some forms of
real time control over the production schedule. As such, the
flexible manufacturing system concept together with Petri
Net are used in this project to provide modeling, control and
simulation of manufacturing systems in the assemble-to-
order environment.
The flexible manufacturing system is a concept which aims
to accomplish the benefits of the job shop and the flow shop

by achieving high volume of production in a flexible
manner. The figure below shows a typical model of a
flexible manufacturing system. This model will be used for
the simulation of the factory scenario.

Fig. 1.1 A Typical FMS model

By characterizing the FMS as a discrete-event system, the
real time controller is designed using Petri Nets, a
mathematical tool that is suitable for modeling discrete
event dynamic systems.

2 PETRI NET

Petri nets have an origin dating back to 1962, when Carl
Adam Petri wrote his PhD thesis on the subject. Since that
time, Petri nets have been accepted as a powerful formal
specification tool for a variety of systems including
concurrent, distributed, asynchronous, parallel,
deterministic and non-deterministic. A manufacturing
system can be viewed as a sequence of discrete events.
Manufacturing operations that take place simultaneously
represent the concurrent characteristic of a dynamic system.
In addition, there are asynchronous operations and event
driven operations, which can result in situations such as
deadlock and conflict. Petri Net is chosen for analysing
such a discrete event dynamic system and to provide
models for analysis, simulation and control of
manufacturing systems. An ordinary or simple Petri Net is a
bipartite graph that can be represented in various
mathematical forms.

The equation below is the quintuple representation of a
Petri Net with n Places and m Transitions chosen for its
completeness:

PN = (P, T, F, W, M)

• P = { p1,…,pn} is a finite set of Places.
• T = { t1,….,tm} is a finite set of Transitions.
• F represents the flow relation, or a set of Arcs. It

comprises of the set of directed arcs from P to T (P
x T , input arcs) and the set of directed Arcs from T
to P (T x P, output arcs). Mathematically,

F ⊂ (P x T) ∪ (T x P)

• W represents the weight assigned to each Arc. This

attribute determines the number of Tokens needed
to fire a Transition as well as the number of
Tokens that are released by a Transition.

• M , the marking of the Petri Net, is a n-
dimensional vector whose Ith component M(pI)
represents the number of Tokens in the Ith Place, pi.
Hence, the initial distribution of tokens in a Petri
Net model is denoted by M0. Subsequently, the
marking of the Petri Net can be changed when
Transitions fire or after Tokens are released from
Transitions.

In order to enhance the factory simulation, the Petri Nets
components in this project are further categorized and given
new functionalities while adhering to the general rules of
General Stochastic Petri Nets. Transitions are categorized
into Dispatcher-type, Process-type, Exit-type,
Return/Blocked-type and Return/Finished-type. In addition,
the time delay between the two events that separate the
firing of a Transition is classified into immediate-type,
deterministic-type and exponentially distributed-type.
Places are categorized into Buffer-type, Resource-type and
Arrival-type. Each Place of Buffer-type or Arrival-type can
perform Conditionally Expedited Shortest Processing Time
(CEXSPT) scheduling on the jobs in its queue. Lastly,
Tokens are categorized into Resource-type and Job-type.

3 CORBA ARCHITECTURE

CORBA (Common Object Request Broker Architecture) is
a specification of an architecture and interface that allows
an application to make request of objects (servers) in a
transparent, independent manner, regardless of platform,
operating system or locale considerations. This
specification was adopted by the Object Management
Group (OMG) to address the complexity and high cost of
developing distributed object applications. The CORBA
paradigm follows two existing methodologies, distributed
client-server programming and object-oriented
programming and it is used in this project to facilitate
communication and synchronization among the distributed

FMS modules. The following figure shows the object
request broker (ORB) of CORBA with reference to [3].

Fig. 3.1 The CORBA ORB Architecture

The client requests a service from the object
implementation. The ORB transports the request that
invokes the method using object adapters and the IDL
skeleton. The client has an object reference (refer to the
next section), an operation name and a set of parameters for
the object and activates operations on this object. The
Object Management Group / Object Model defines each
operation to be associated with a controlling parameter,
implemented in CORBA as an object reference. The client
does not know the location of the object or any of the
implementation details. The request is handled by the ORB,
which must locate the target object and route the request to
that object. It is also responsible for getting results back to
the client.
The request makes use of either the dynamic invocation
(dynamic link) or the IDL Stubs (static link) interface.
Static links use the IDL stubs (as local function calls) and
dynamic requests use the DII. The object implementation is
not aware of the difference. If the interface was defined in
the IDL and the client has an interface for the target object,
the IDL stub is used. This stub is specific to the target
object. The DII is used when the interface is not known at
runtime. The DII uses information stored in the interface
repository to establish the request. Requests are passed from
the ORB to the object implementation through the IDL
skeleton. The object implementation is made available by
using information stored in the implementation repository.
The object implementations encapsulate state and behaviors
of the object. CORBA only defines the mechanisms to
invoke operation, it does not define how activated or
stopped, made to persist, etc. The mapping of the object
reference to the object implementation is provided by a
primary ORB service known as the object adapter. The
following section describes the object adapter with
reference to the object adapter that is used in this project,
the Portable Object Adapter (POA).

3.1 Portable Object Adapter

An object adapter (OA) serves as mediator between the
ORB and the servant, providing the ORB with a consistent
interface for interacting with user code, and being flexible
in cooperating with the servant. Different object adapters
could then be provided to suit the various server
requirements, and an implementation could choose between
them and select the most appropriate. OA have a public
interface that is used by the object implementation and a
private interface that is used by the IDL skeleton.
Unlike its predecessor the BOA, the Portable Object
Adapter is not a singleton component. Many POA instances
can exist in a server organized in a hierarchical structure.
The Root POA is created by the ORB, new POAs can then
be created by the user as children of existing ones. Each
POA maintains its own Active Object Map, a table mapping
the currently active objects to servants (entities for
servicing objects). Objects are activated within a particular
POA instance, and henceforth associated with their POA,
identified by a unique Object Id within its namespace.
Synchronization between POAs is achieved by POA
Managers, which control the readiness of one or more
POAs to receive requests. Apart from having control over
synchronization, the POA provides many hooks that enable
a user to influence request processing:
• The life cycle of servants can be controlled and monitored
by Servant Managers.
• Default Servants can service many objects at once.
• Adapter Activators can be used to create new POAs if
necessary.

4 DESIGN AND IMPLEMENTION

The Petri Nets Simulator is a Java-based application for
modeling, control and simulation of FMS modules using
Petri Nets. The methodology used in developing such a
complex system is to decompose and modularize the overall
system using the object-oriented paradigm. Since Petri Nets
are used to model the flexible manufacturing system, its
various components such as Place, Transition and Tokens
are developed as generic Java objects in the Petri Nets
Simulator and they serve as the building blocks for the
factory model. Each instance of the Petri Nets Simulator
provides the avenue for designing and hosting of one FMS
module.
In this project, separate instances of the Petri Nets
Simulator representing the different FMS modules as shown
in Fig. 1.1 reside in several computers in a distributed
manner. These computers can belong to the same subnet or
different subnets but all of them will form the factory
network. Communication among distributed modules is
achieved using the Common Object Request Broker
Architecture and each of them can act as client and server
concurrently using the Java multi-threading feature. From
the customers’ demands, periodical forecasts and the
various attributes which are factored into MRP module e.g.

Safety Stocks, the MPS of several products are generated
dynamically and stored in different tables of the Oracle
database. Based on the MPS of the products, job batches
representing the various bills of materials for the products
are created by the Job Generator module. Following that,
these jobs are sent to the factory network by calling the job
creation method available in the remote CORBA object
which is part of the central storage module of the factory
network. Jobs are routed through the network till
completion and real time scheduling is performed
throughout the process. Upon completion, the status of the
jobs will be feedback to the Job Generator module which
also provides the feature for updating the common database.
The database is also made available to the front-end
manufacturing portal. The figure below shows the overall
system diagram of the factory network.

Fig. 4.1 Overall System Diagram

The context diagram of a single FMS module is as shown
below.

Fig. 4.2 Context Diagram of a FMS module

As can be seen from the context diagram, in order to
achieve data integrity and to systematically monitor
database access, the FMS module does not have read or
write data into the Oracle database. Instead, the Job
Generator module obtains the jobs’ attributes from the
database based on the MPS of that product and generate
jobs that are sent to the factory network using methods
implemented in the CORBA objects. During the designing
and abstraction of the Petri Nets Simulator, 11 main classes
are identified and the partial view of the class diagram in
UML is as shown below.

Fig. 4.3 Partial Class Diagram of the Petri Nets Simulator

There are 3 main categories of object classes. The Petri
Nets Component Classes are abstractions of components of
Petri Nets. The Design and GUI classes provide a user-
friendly environment for designing generic Petri Net
models and testing the models’ attributes based on the
various Petri Net’s properties. Lastly, the Factory classes
comprises of threads for the simulation of factory scenario
as well as the implementation of the CORBA object whose
methods can be called by other distributed FMS modules.
Visibroker ORB which comes with Inprise Application
Server 4.0 is used as the CORBA ORB and its dynamic
directory service Osagent is used as the implementation
repository. The Osagent provides facilities which are used
by both the client and the object implementations. It is used
in this project in substitution to the Naming Service due to
its simplified API that eases the complexity of discovering
distributed objects. Moreover, Osagent provides support for

fault tolerance and it has a in-built Round Robin load-
balancing algorithm.

5 DEPLOYMENT AND SIMULATION

The factory network that is simulated in this project
comprises of 6 FMS modules designed according to the
FMS structure shown in Fig. 1.1 while aligning to the
concepts of FMS given in [1] and [2]. Besides the central
storage CS-1 and the material handling system MHS-1,
there are 4 workstations identified by WS-1, WS-2, WS-3
and WS-4. The actual deployment architecture of the
factory network is as shown below.

Fig. 5.1 Deployment Architecture of the Factory Network

One Osagent is started on each terminal to provide better
fault-tolerance. After the invocation of the Petri Nets
Simulator in the different distributed terminals, the Petri
Nets design of each FMS module is loaded into the
application. Following which, the object implementations
of these modules and their POA names are registered into
the Osagents by clicking the button found at the MenuBar
to activate the Factory thread. After this is done, the factory
network is ready to receive jobs from the Job Generator.
New job batches will arrive at CS-1 or the Central Storage
facility for the FMS. Following which, material handling
process is performed before the job is dispatched to its
designated workstation. After processing, the job will be
routed to the MHS-1 for material handling process. If the
job has finished its process sequence, it will exit the system.
The job ID of the finished job will also be sent back to the
Job Generator module where the MPS in the Oracle
database is updated. Otherwise, the job is routed back to
CS-1 for futher dispatching.
Note that there is no startup sequence for each of the FMS
modules. New FMS module can join the factory network at
any time by activating its Factory thread and designated

jobs will be routed to it subsequently. This ensures the
overall scalability of the factory network.
For the purpose of this simulation, new batch of jobs are
made to arrive only after the previous batch have finished
processing. This is to ease the monitoring of the jobs’ status
across the distributed terminals in order to obtain simulation
results for analysis. Altogether, 4 types of simulation are
carried out: short process simulation with CEXSPT
scheduling, short process simulation without CEXSPT
scheduling, long process simulation with CEXSPT and long
process simulation without CEXSPT scheduling. The figure
below is the screenshot showing the arrival of a new job
batch at the CS-1.

Fig. 5.2 Jobs Arrival at CS-1

The figure below shows MHS-1 with the finished status of
the jobs.

Fig. 5.3 Jobs Finished at MHS-1

From the simulation, it is found that the effect of CEXSPT
is not obvious when the job processing times are small in
the short process simulation. On the other hand, when the
job processing times are extended in the long process
simulation, using CEXSPT for real-time scheduling does
result in fewer late jobs as compared to FIFO. Therefore, it

can be concluded that the Petri Net modeling technique and
the presence of CEXSPT for real-time scheduling are
crucial factors affecting the performance of the factory
network. The following tables show the results of the long
process simulation conducted for a batch of 6 jobs.

Table 5.1 Long Process Simulation without CEXSPT

Table 5.2 Long Process Simulation with CEXSPT

In addition, through the use of CORBA, communication
and synchronization between distributed objects in the FMS
modules have been achieved across different platforms
seamlessly during the simulation.

6 DISCUSSION

There are various issues that cause limitations or problems
affecting the performance of the Petri Nets Simulator as a
real-time controller. These issues are either present in a
FMS module or the inter-module communication
mechanism. Firstly, since Java multithreading is used
extensively in the Petri Nets Simulator for implementation
of concurrent processing, the factory simulation and real-
time control within the FMS module are affected by the
issues of thread synchronization, memory consumption by
threads and unpredictability of thread scheduling and
processing.
Secondly, the synchronous nature of CORBA operation
invocations and the relatively long duration of remote calls
make the CORBA-based application particularly vulnerable
to the threat of a blocking GUI and thus affect the inter-
module communication mechanism. This is make worse by
the non-deterministic nature of the server latency.
Finally, the application of Petri Nets to certain real world
sizable systems is questionable due to the state explosions
problems encountered in the modeling and design stages.
This can be inferred from the various case studies that are

presented in [1] and [2]. However, this problem is solved in
the project using OOD and distributed objects.

7 CONCLUSION

Using the Petri Nets Simulator, the simulation of the factory
scenario has been successfully carried out in the Laboratory
of Concurrent Engineering and Logistic (LCEL). The Petri
Nets Simulator has achieved scalability through the use of
OOD and CORBA. The mode of operation is decentralized
and each FMS modules in the simulation are proven to be
capable of performing independent job routing and real-
time scheduling. Through intelligent job routing, jobs are
not discarded when their designated workstations are down.
This improves the robustness of the factory network.
Finally, the deployment of the Petri Nets Simulator over
different operating systems results in minimal variation on
its performance. Thus, the Petri Nets Simulator can be
concluded to be a portable Petri-Net controller.

REFERENCES

[1] Alan A. Desrochers, Robert Y. Al-Jaar, “Applications

of Petri Nets in Manufacturing Systems”, IEEE Press
445 Hoes Lane, P.O. Box 1331 Piscataway, NJ 08855-
1331 1-800-678-IEEE

[2] Zhou Meng Chu, and Kurapati Venkatesh, “Modeling,
Simulation, And Control Of Flexible Manufacturing
Systems: A Petri Net Approach”, World Scientific
Publishing Co. Pte Ltd., 1999

[3] Douglas C. Schmidt, “Developing Distributed Object
Computing Application with CORBA”, Elec. & Comp.
Eng. Dept, University of California, Irvine

[4] Chung-Hsien Kuo, Han-Pang Huang, “Integrated
Manufacturing System Modeling and Simulation Using
Distributed Colored Timed Petri Net”, Robotics
Laboratory, Department of Mechanical Engineering
National Taiwan University, Taipei, TAIWAN 10674,
R.O.C.

[5] Douglas C. Schmidt, Fred Kuhns, “An Overview of the
Real-Time CORBA Specification”, IEEE Computer
Special Issue, June 2000

