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ABSTRACT 
 
The intense competition present in the manufacturing 
industry has renewed interest in the issues of increasing 
productivity through state-of-art manufacturing technology. 
Gaining technological edge requires the harnessing of 
innovative concepts and original ideas in solving complex 
manufacturing planning and control problems. Flexible 
manufacturing system (FMS) is a concept that has evolved 
since the 1970s that attempts to achieve the efficiency of 
automated, high-volume mass production while retaining 
the flexibility of low-volume job-shop production. Petri Net 
is a mathematical modeling concept that is suitable for 
portrayal of discrete event dynamic systems. As such, the 
Petri Nets concept has been adopted in this project to 
model, monitor and control the different modules of a FMS 
in a real time manner. Each module of the FMS is designed 
according to the Petri Nets model and run in an 
independent, generic application written entirely in Java. 
The synchronization and communication between these 
modules are achieved using the Common Object Request 
Broker architecture (CORBA). Jobs created based on the 
master production schedule (MPS) generated by the 
existing Material Resource Planning (MRP) module are 
dispatched into the factory network where they are 
processed and routed until completion. Real-time 
scheduling using CEXSPT is performed on the jobs as they 
are routed through the factory network. In addition, the 
MPS is dynamically modified according to the finished 
jobs’ status. 
 

 
1 INTRODUCTION 

 
In recent years, fluctuating market demand for 
manufacturing products, shorter lead-time, smaller but more 
frequent order quantities are some factors which makes 
forecasting of demand for a manufacturing product 
extremely challenging. The concept of Material 
Requirement Planning (MRP) in an assemble-to-order 
environment aims to alleviate the problem. In the assemble-
to-order environment, the manufacturing system is required 
to possess a high degree of flexibility and some forms of 
real time control over the production schedule. As such, the 
flexible manufacturing system concept together with Petri 
Net are used in this project to provide modeling, control and 
simulation of manufacturing systems in the assemble-to-
order environment.  
The flexible manufacturing system is a concept which aims 
to accomplish the benefits of the job shop and the flow shop 

by achieving high volume of production in a flexible 
manner. The figure below shows a typical model of a 
flexible manufacturing system. This model will be used for 
the simulation of the factory scenario. 
 

Fig. 1.1 A Typical FMS model 
 

By characterizing the FMS as a discrete-event system, the 
real time controller is designed using Petri Nets, a 
mathematical tool that is suitable for modeling discrete 
event dynamic systems.  
 

 
2 PETRI NET 

 
Petri nets have an origin dating back to 1962, when Carl 
Adam Petri wrote his PhD thesis on the subject.  Since that 
time, Petri nets have been accepted as a powerful formal 
specification tool for a variety of systems including 
concurrent, distributed, asynchronous, parallel, 
deterministic and non-deterministic. A manufacturing 
system can be viewed as a sequence of discrete events. 
Manufacturing operations that take place simultaneously 
represent the concurrent characteristic of a dynamic system. 
In addition, there are asynchronous operations and event 
driven operations, which can result in situations such as 
deadlock and conflict. Petri Net is chosen for analysing 
such a discrete event dynamic system and to provide 
models for analysis, simulation and control of 
manufacturing systems. An ordinary or simple Petri Net is a 
bipartite graph that can be represented in various 
mathematical forms.  



The equation below is the quintuple representation of a 
Petri Net with n Places and m Transitions chosen for its 
completeness:  
 

PN = ( P, T, F, W, M ) 
 

•  P = { p1,…,pn} is a finite set of Places. 
•  T = { t1,….,tm} is a finite set of Transitions. 
•  F represents the flow relation, or a set of Arcs. It 

comprises of the set of directed arcs from P to T (P 
x T , input arcs) and the set of directed Arcs from T 
to P (T x P, output arcs). Mathematically,  

 
F ⊂  (P x T) ∪  (T x P) 

 
•  W represents the weight assigned to each Arc. This 

attribute determines the number of Tokens needed 
to fire a Transition as well as the number of 
Tokens that are released by a Transition. 

•  M , the marking of the Petri Net, is a n-
dimensional vector whose Ith component M(pI) 
represents the number of Tokens in the Ith Place, pi. 
Hence, the initial distribution of tokens in a Petri 
Net model is denoted by M0. Subsequently, the 
marking of the Petri Net can be changed when 
Transitions fire or after Tokens are released from 
Transitions. 

In order to enhance the factory simulation, the Petri Nets 
components in this project are further categorized and given 
new functionalities while adhering to the general rules of 
General Stochastic Petri Nets. Transitions are categorized 
into Dispatcher-type, Process-type, Exit-type, 
Return/Blocked-type and Return/Finished-type. In addition, 
the time delay between the two events that separate the 
firing of a Transition is classified into immediate-type, 
deterministic-type and exponentially distributed-type. 
Places are categorized into Buffer-type, Resource-type and 
Arrival-type. Each Place of Buffer-type or Arrival-type can 
perform Conditionally Expedited Shortest Processing Time 
(CEXSPT) scheduling on the jobs in its queue. Lastly, 
Tokens are categorized into Resource-type and Job-type.   
 
 
3 CORBA ARCHITECTURE 

 
CORBA (Common Object Request Broker Architecture) is 
a specification of an architecture and interface that allows 
an application to make request of objects (servers) in a 
transparent, independent manner, regardless of platform, 
operating system or locale considerations. This 
specification was adopted by the Object Management 
Group (OMG) to address the complexity and high cost of 
developing distributed object applications. The CORBA 
paradigm follows two existing methodologies, distributed 
client-server programming and object-oriented 
programming and it is used in this project to facilitate 
communication and synchronization among the distributed 

FMS modules. The following figure shows the object 
request broker (ORB) of CORBA with reference to [3]. 
 

Fig. 3.1 The CORBA ORB Architecture 
 
The client requests a service from the object 
implementation. The ORB transports the request that 
invokes the method using object adapters and the IDL 
skeleton. The client has an object reference (refer to the 
next section), an operation name and a set of parameters for 
the object and activates operations on this object. The 
Object Management Group / Object Model defines each 
operation to be associated with a controlling parameter, 
implemented in CORBA as an object reference. The client 
does not know the location of the object or any of the 
implementation details. The request is handled by the ORB, 
which must locate the target object and route the request to 
that object. It is also responsible for getting results back to 
the client.  
The request makes use of either the dynamic invocation 
(dynamic link) or the IDL Stubs (static link) interface. 
Static links use the IDL stubs (as local function calls) and 
dynamic requests use the DII. The object implementation is 
not aware of the difference. If the interface was defined in 
the IDL and the client has an interface for the target object, 
the IDL stub is used. This stub is specific to the target 
object. The DII is used when the interface is not known at 
runtime. The DII uses information stored in the interface 
repository to establish the request. Requests are passed from 
the ORB to the object implementation through the IDL 
skeleton. The object implementation is made available by 
using information stored in the implementation repository. 
The object implementations encapsulate state and behaviors 
of the object. CORBA only defines the mechanisms to 
invoke operation, it does not define how activated or 
stopped, made to persist, etc. The mapping of the object 
reference to the object implementation is provided by a 
primary ORB service known as the object adapter. The 
following section describes the object adapter with 
reference to the object adapter that is used in this project, 
the Portable Object Adapter  (POA). 
 



3.1 Portable Object Adapter 
 
An object adapter (OA) serves as mediator between the 
ORB and the servant, providing the ORB with a consistent 
interface for interacting with user code, and being flexible 
in cooperating with the servant. Different object adapters 
could then be provided to suit the various server 
requirements, and an implementation could choose between 
them and select the most appropriate. OA have a public 
interface that is used by the object implementation and a 
private interface that is used by the IDL skeleton. 
Unlike its predecessor the BOA, the Portable Object 
Adapter is not a singleton component. Many POA instances 
can exist in a server organized in a hierarchical structure. 
The Root POA is created by the ORB, new POAs can then 
be created by the user as children of existing ones. Each 
POA maintains its own Active Object Map, a table mapping 
the currently active objects to servants (entities for 
servicing objects). Objects are activated within a particular 
POA instance, and henceforth associated with their POA, 
identified by a unique Object Id within its namespace. 
Synchronization between POAs is achieved by POA 
Managers, which control the readiness of one or more 
POAs to receive requests. Apart from having control over 
synchronization, the POA provides many hooks that enable 
a user to influence request processing: 
•  The life cycle of servants can be controlled and monitored 
by Servant Managers. 
•  Default Servants can service many objects at once. 
•  Adapter Activators can be used to create new POAs if 
necessary. 
 
 
4 DESIGN AND IMPLEMENTION 
 
The Petri Nets Simulator is a Java-based application for 
modeling, control and simulation of FMS modules using 
Petri Nets. The methodology used in developing such a 
complex system is to decompose and modularize the overall 
system using the object-oriented paradigm. Since Petri Nets 
are used to model the flexible manufacturing system, its 
various components such as Place, Transition and Tokens 
are developed as generic Java objects in the Petri Nets 
Simulator and they serve as the building blocks for the 
factory model. Each instance of the Petri Nets Simulator 
provides the avenue for designing and hosting of one FMS 
module. 
In this project, separate instances of the Petri Nets 
Simulator representing the different FMS modules as shown 
in Fig. 1.1 reside in several computers in a distributed 
manner. These computers can belong to the same subnet or 
different subnets but all of them will form the factory 
network. Communication among distributed modules is 
achieved using the Common Object Request Broker 
Architecture and each of them can act as client and server 
concurrently using the Java multi-threading feature. From 
the customers’ demands, periodical forecasts and the 
various attributes which are factored into MRP module e.g. 

Safety Stocks, the MPS of several products are generated 
dynamically and stored in different tables of the Oracle 
database. Based on the MPS of the products, job batches 
representing the various bills of materials for the products 
are created by the Job Generator module. Following that, 
these jobs are sent to the factory network by calling the job 
creation method available in the remote CORBA object 
which is part of the central storage module of the factory 
network. Jobs are routed through the network till 
completion and real time scheduling is performed 
throughout the process. Upon completion, the status of the 
jobs will be feedback to the Job Generator module which 
also provides the feature for updating the common database. 
The database is also made available to the front-end 
manufacturing portal. The figure below shows the overall 
system diagram of the factory network. 

Fig. 4.1 Overall System Diagram 
 
The context diagram of a single FMS module is as shown 
below. 

Fig. 4.2 Context Diagram of a FMS module 
 



As can be seen from the context diagram, in order to 
achieve data integrity and to systematically monitor 
database access, the FMS module does not have read or 
write data into the Oracle database. Instead, the Job 
Generator module obtains the jobs’ attributes from the 
database based on the MPS of that product and generate 
jobs that are sent to the factory network using methods 
implemented in the CORBA objects. During the designing 
and abstraction of the Petri Nets Simulator, 11 main classes 
are identified and the partial view of the class diagram in 
UML is as shown below. 
 

Fig. 4.3 Partial Class Diagram of the Petri Nets Simulator 
 
There are 3 main categories of object classes. The Petri 
Nets Component Classes are abstractions of components of 
Petri Nets. The Design and GUI classes provide a user-
friendly environment for designing generic Petri Net 
models and testing the models’ attributes based on the 
various Petri Net’s properties. Lastly, the Factory classes 
comprises of threads for the simulation of factory scenario 
as well as the implementation of the CORBA object whose 
methods can be called by other distributed FMS modules. 
Visibroker ORB which comes with Inprise Application 
Server 4.0 is used as the CORBA ORB and its dynamic 
directory service Osagent is used as the implementation 
repository. The Osagent provides facilities which are used 
by both the client and the object implementations. It is used 
in this project in substitution to the Naming Service due to 
its simplified API that eases the complexity of discovering 
distributed objects. Moreover, Osagent provides support for 

fault tolerance and it has a in-built Round Robin load-
balancing algorithm. 
 
 
5 DEPLOYMENT AND SIMULATION 
 
The factory network that is simulated in this project 
comprises of 6 FMS modules designed according to the 
FMS structure shown in Fig. 1.1 while aligning to the 
concepts of FMS given in [1] and [2]. Besides the central 
storage CS-1 and the material handling system MHS-1, 
there are 4 workstations identified by WS-1, WS-2, WS-3 
and WS-4. The actual deployment architecture of the 
factory network is as shown below. 
 

Fig. 5.1 Deployment Architecture of the Factory Network 
 
One Osagent is started on each terminal to provide better 
fault-tolerance. After the invocation of the Petri Nets 
Simulator in the different distributed terminals, the Petri 
Nets design of each FMS module is loaded into the 
application. Following which, the object implementations 
of these modules and their POA names are registered into 
the Osagents by clicking the button found at the MenuBar 
to activate the Factory thread. After this is done, the factory 
network is ready to receive jobs from the Job Generator. 
New job batches will arrive at CS-1 or the Central Storage 
facility for the FMS. Following which, material handling 
process is performed before the job is dispatched to its 
designated workstation. After processing, the job will be 
routed to the MHS-1 for material handling process. If the 
job has finished its process sequence, it will exit the system. 
The job ID of the finished job will also be sent back to the 
Job Generator module where the MPS in the Oracle 
database is updated. Otherwise, the job is routed back to 
CS-1 for futher dispatching.   
Note that there is no startup sequence for each of the FMS 
modules. New FMS module can join the factory network at 
any time by activating its Factory thread and designated 



jobs will be routed to it subsequently. This ensures the 
overall scalability of the factory network.  
For the purpose of this simulation, new batch of jobs are 
made to arrive only after the previous batch have finished 
processing. This is to ease the monitoring of the jobs’ status 
across the distributed terminals in order to obtain simulation 
results for analysis. Altogether, 4 types of simulation are 
carried out: short process simulation with CEXSPT 
scheduling, short process simulation without CEXSPT 
scheduling, long process simulation with CEXSPT and long 
process simulation without CEXSPT scheduling. The figure 
below is the screenshot showing the arrival of a new job 
batch at the CS-1. 

Fig. 5.2 Jobs Arrival at CS-1 
 

The figure below shows MHS-1 with the finished status of 
the jobs. 
 

Fig. 5.3 Jobs Finished at MHS-1 
 
From the simulation, it is found that the effect of CEXSPT 
is not obvious when the job processing times are small in 
the short process simulation. On the other hand, when the 
job processing times are extended in the long process 
simulation, using CEXSPT for real-time scheduling does 
result in fewer late jobs as compared to FIFO. Therefore, it 

can be concluded that the Petri Net modeling technique and 
the presence of CEXSPT for real-time scheduling are 
crucial factors affecting the performance of the factory 
network. The following tables show the results of the long 
process simulation conducted for a batch of 6 jobs. 
 

Table 5.1 Long Process Simulation without CEXSPT 
 

Table 5.2 Long Process Simulation with CEXSPT  
 

In addition, through the use of CORBA, communication 
and synchronization between distributed objects in the FMS 
modules have been achieved across different platforms 
seamlessly during the simulation. 
 
 
6 DISCUSSION 
 
There are various issues that cause limitations or problems 
affecting the performance of the Petri Nets Simulator as a 
real-time controller. These issues are either present in a 
FMS module or the inter-module communication 
mechanism. Firstly, since Java multithreading is used 
extensively in the Petri Nets Simulator for implementation 
of concurrent processing, the factory simulation and real-
time control within the FMS module are affected by the 
issues of thread synchronization, memory consumption by 
threads and unpredictability of thread scheduling and 
processing.  
Secondly, the synchronous nature of CORBA operation 
invocations and the relatively long duration of remote calls 
make the CORBA-based application particularly vulnerable 
to the threat of a blocking GUI and thus affect the inter-
module communication mechanism. This is make worse by 
the non-deterministic nature of the server latency.  
Finally, the application of Petri Nets to certain real world 
sizable systems is questionable due to the state explosions 
problems encountered in the modeling and design stages. 
This can be inferred from the various case studies that are 



presented in [1] and [2]. However, this problem is solved in 
the project using OOD and distributed objects. 
 
 
7 CONCLUSION 
 
Using the Petri Nets Simulator, the simulation of the factory 
scenario has been successfully carried out in the Laboratory 
of Concurrent Engineering and Logistic (LCEL). The Petri 
Nets Simulator has achieved scalability through the use of 
OOD and CORBA. The mode of operation is decentralized 
and each FMS modules in the simulation are proven to be 
capable of performing independent job routing and real-
time scheduling. Through intelligent job routing, jobs are 
not discarded when their designated workstations are down. 
This improves the robustness of the factory network. 
Finally, the deployment of the Petri Nets Simulator over 
different operating systems results in minimal variation on 
its performance. Thus, the Petri Nets Simulator can be 
concluded to be a portable Petri-Net controller. 
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